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Privacy for Biometrics 
Personal Data: 
Any information relating to an identified or identifiable natural person; an identifiable 
person is one who can be identified, directly or indirectly, ... by reference to an 
identification number or to one or more factors specific to his physical, physiological, 
mental, economic, cultural or social identity. [Directive 95/46/EC] 
 
Problem: 

•  Increasing usage of biometric data & biometric systems  
•  Cannot be revoked & reissued.  
 
Threats: 
•  Biometric à reveal sensitive & private information 

skin color, age, sex, ethnic origin etc. 
•  Cross-matching of biometric traits à linkability, tracking, profiling 
•  In case of compromise à Identity theft.  
 
 



4 

§  Biohash is a short and pseudo-random representation of biometric itself.  
§  It is an irreversible compressed representation of biometric data generated 

by using a secret key. 
 

What is biohasing? 
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Biohash Vector 

Biohash Vector 

Authentication 
Verify ? 

Enrollment 
Stage 

Authentication  
Stage 

Verification via biohashes… 
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Privacy Evaluation Framework 

Threat Models 
• Naïve Model 
•  Advance Model 

Protection 
Goals 
• Diversification 
• Unlinkability 
•  Privacy Leakage 

Evaluation 
Metrics 
•  Entropy 
• Conditional Entropy 
• Distance Measure 
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Threat Models 
•  Threat Models 

–  Naïve Model 
–  Advanced Model 

BEAT [284989] D5.6: Metrics for the Evaluation of Privacy Preservation

public helper data and biometric features in a biometric template protection method. A trade-
o↵ between maximum secret key rate and privacy leakage is addressed in [22]. On the other
hand, the aforementioned security and privacy assessment methodologies fail to cover all bio-
metric template protection methods due to di�culties to find common metrics to evaluate privacy
preservation level of these methods. Instead, current assessment methodologies o↵er evaluation
metrics method by method.

Biohashing methods are one of the emerging biometric template protection methods [31],
[34], [33],[67], [39]. They are based on randomization of a biometric template by using secret
key of the corresponding user. These methods become very popular due to their higher authen-
tication performances and easy to deploy properties for match-on card applications. Recall that
in deliverable D5.2.Reference privacy preservation system, biohashing methods are selected as a
reference privacy preservation system and they have been implemented. However, recent works
also show that they could have serious security and privacy problems [67], [37]. There is a need
for developing a security and privacy assessment methodology as well as privacy metrics for
biohashing methods in order to assess them.

In this part, we focus on assessment of privacy protection capability of biohashing methods.
First, we define naive and advanced threat scenarios by taking into account real life applications.
We specify privacy targets e.g. diversification, unlinkability, and privacy leakage. At the next
step, we assess privacy protection capability of the biohashing methods by taking into account
pre-defined threat models and privacy targets.

Table 1: Equal Error Rates in Naive Threat Model for 128, 256, and 512 bit Biohash Vectors in
BioSecure Database

Length of Biohash Vector Equal Error Rate
512 0,158%
256 0,663%
128 1,215%

Table 2: Equal Error Rates in Advance Threat Model for 128, 256, and 512 bit Biohash Vectors
in BioSecure Database

Length of Biohash Vector Equal Error Rate
512 13,124%
256 13,836%
128 15,025%
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Protection Goals 
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Protection Goals: Diversification 
•  Diversification is the maximum number of independent 

protected biometric template that can be generated from 
the same biometric feature of the user by a biometric 
template protection method.  

•  It can be measured by using entropy H(B). 

BEAT [284989] D5.6: Metrics for the Evaluation of Privacy Preservation

Table 7: Entropy of 128, 256, and 512 bit biohash vectors in BioSecure face database

Length of Biohash Vector Entropy (bit)
512 510,8323
256 255,2518
128 127,6303

Table 8: Simulation results in terms of bits for privacy leakage in BioSecure face database

Length of Biohash Vector Privacy Leakage (bit)
512 105,7862
256 59,8323
128 30,6894

5 Capacity Analysis for Biohashing
In this chapter, we address capacity analysis of the biometric hashing methods which are men-
tioned as reference privacy preservation system in the deliverable D5.2 Reference privacy preser-
vation system. The real-world performance prediction of biometric system is a very complex
task. When we talk about privacy evaluation, the complexity of the task increases automatically.
There are several performance indicators for biometric systems (e.g. equal error rate, false ac-
ceptance rate, false rejection rate). On the other hand, biometric vendors are su↵er from lack of
su�cent and reliable performance indicators for privacy evaluation. Thus, they cannot estimate
the actual performance of the biometric hashing methods in real life applications by only using
performance indicators like equal error rate. In such cases, capacity estimation of the biometric
hashing methods can be a good candidate for privacy evaluations since the calculations give an
idea on how many bits of a biohash vectors are actually useful and reliable to distinguish users.
In this chapter, an information theoretic capacity analysis framework for biohashing is discussed
by taking into account their noise resilience which is analogous to the variations of the inputs
for same user. It is possible to estimate the number of di↵erent users that a biometric hashing
system can accommodate by assuming that every biohash vector is possible to be chosen for
biometric template and within-class variations can be considered as noise and each bit position
has the same probabilities.

One of the main motivations of the information theory is the reliable communication over
a noisy channel. In biometrics systems, the users cannot give exactly the same input to the
system each and every case. Hence, there are various inputs which belong to the same user in the
biometrics systems. In other words, there are noisy inputs for each user and it can be interpreted
as being analogous to the communication over a noisy channel. Thus, the variations of the inputs
of the same user can be seen a noise added versions of a true biometric template.

BEAT D5.6: page 33 of 62
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Protection Goals: Unlinkability 
•  Unlinkability between the biohash vector and the user means that 

these items of interest cannot be related with each other after 
adversary’s observation.  

 

 
•  Distance measure satisfies the properties of a metric (triangle in- 

equality, non-negativity, indiscernibility and symmetry). This distance 
metric is also known as the Variation of information.  

BEAT [284989] D5.6: Metrics for the Evaluation of Privacy Preservation

4.3.2 Unlinkability

Biohashing methods generate protected templates i.e. biohash vectors from biometric features
of the user. Biohashes are used for authentication a user in a biometric verification system.
Biohashing methods aim to preserve privacy of the user via biohashes. However, an adversary
may not need to generate the original biometric feature of a user in order threaten the privacy.
If the adversary links the biohash with the user, he can be successful. Unlinkability between the
biohash vector and the user means that these items of interest cannot be related with each other
after adversary’s observation.

d(B1; B2) =
1
2

(H(B1|B2) + H(B2|B1)) (13)

where d(.) denotes the function that computes distance measure, B1 and B2 denote di↵erent
biohashes of the same user. Distance measure satisfies the properties of a metric (triangle in-
equality, non-negativity, indiscernability and symmetry). This distance metric is also known as
the Variation of information.

There may be two main cases in unlinkability:

• Case 1: Attacker gets two biohashes, which are generated from the same key in di↵erent
authentication sessions, of the same user. However, the attacker does not know the owner
of the biohashes. In real-world applications, let us assume that two web applications uses
biohashing based user authentication. A user uses same key but slightly di↵erent biometric
data (i.e. face image in di↵erent authentication sessions) in order to authenticate himself
to these web applications. The attacker get two biohashes, which belong to the same user,
from these applications. However, the attacker does not know that these biohashes are
belong to the same user but wants to link these two biohashes.

• Case 2: Attacker gets two biohashes, which are generated from the di↵erent keys in dif-
ferent authentication sessions, of the same user. However, the attacker does not know the
owner of the biohashes. In real-world applications, let us assume that two web applications
uses biohashing based user authentication. A user uses di↵erent keys and slightly di↵erent
biometric data (i.e. face image in di↵erent authentication sessions) in order to authenti-
cate himself to these web applications. The attacker get two biohashes, which belong to
the same user, from these applications. However, the attacker does not know that these
biohashes are belong to the same user but wants to link these two biohashes.

4.3.3 Privacy Leakage

In this part, we analyze privacy leakage in biohashing methods. In our work, privacy leakage
quantifies how much information about biometric data contained in a binary biohash vector. The
probability distribution of biohash plays a very important role in this privacy assessment. It is
expected that a biohash, B, has uniform distribution where a bit’s probability being 1 or 0 is
equal. In other words, binary biohash vector, B, is expected to be uniformly and independently
distributed (u.i.d.), namely any element bi of B, with p(bi = 0) = p(bi = 1) = 0.5 where p(.)

BEAT D5.6: page 31 of 62
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Protection Goals: Unlinkability 
•  Case 1: Attacker gets two biohashes, which are 

generated from the same key in different authentication 
sessions, of the same user. However, the attacker does 
not know the owner of the biohashes.  

•  Case 2: Attacker gets two biohashes, which are 
generated from the different keys in different 
authentication sessions, of the same user. However, the 
attacker does not know the owner of the biohashes.  



12 

BEAT [284989] D5.6: Metrics for the Evaluation of Privacy Preservation

Table 5: Simulation results in terms of bits for unlinkability in case of user has single secret key
in BioSecure face database - case 1

Length of Biohash Vector Distance Measure (bit)
512 350,1094
256 179,0823
128 94,6018

Table 6: Simulation results in terms of bits for unlinkability in case of user has multiple secret
keys in BioSecure face database - case 2

Length of Biohash Vector Distance Measure (bit)
512 510,7575
256 254,3375
128 127,0781

denotes probability density function. On the other hand, the dependency of binary features is
ignored in many biometric template protection methods. Thus, privacy preservation capability
of these methods are highly overestimated. It is necessary to know the distribution of biometric
data in theoretical analysis. When bits extracted from biometric features are uniformly and
independently distributed, it is possible to achieve perfect security from information-theoretical
point of view. However, this strict condition is di�cult to fulfill in real-life application and
privacy leakage is unavoidable [69]. There exist privacy leakage in many biometric template
protection methods in order to compensate variation of biometric data. The protected biometric
template should contain minimum necessary biometric information since exposure of biometric
information is not only threat for privacy but also a serious security shortcoming. It can also be
exploited to retrieve activities of a subject in other biometric applications. Privacy leakage can
be measured with the mutual information[22]. We define privacy leakage in our work as follows:

I(B; K) = H(B) � H(B|K) (14)

where I(.) denotes a function which computes mutual information, B is the biohash a user and K
is the secret key of the user.

BEAT D5.6: page 32 of 62
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has single secret key in BioSecure face database - case 1 
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6.3 Privacy Evaluation via Other Metrics: Unlinkability, Privacy Leakage
In this part, we perform privacy evaluation for fingerprint based biohashing methods by using
other metrics e.g. unlinkability, privacy leakage as described in Section 4. We use the same
threat models and metrics in the evaluation. The simulation results are inline with the simulation
results in Section 4.

The simulation results for unlinkability are given in Table 21-26. Recall that there are two
main cases for unlinkability as described in Section 4.3.2. According to the simulation results,
the privacy of a user is under more serious threat if an attacker gets two biohashes of the same
user which are generated from the same key.

Table 21: Simulation results in terms of bits for unlinkability in case of user has single secret key
in FVC2002-DB1 fingerprint database - case 1

Length of Biohash Vector Distance Measure (bit)
512 171,8002
256 85,9001
128 42,95

Table 22: Simulation results in terms of bits for unlinkability in case of user has multiple secret
keys in FVC2002-DB1 fingerprint database - case 2

Length of Biohash Vector Distance Measure (bit)
512 243,3346
256 121,2642
128 60,4813

Table 23: Simulation results in terms of bits for unlinkability in case of user has single secret key
in FVC2002-DB2 fingerprint database - case 1

Length of Biohash Vector Distance Measure (bit)
512 174,6066
256 87,3033
128 43,6517

BEAT D5.6: page 54 of 62
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Table 24: Simulation results in terms of bits for unlinkability in case of user has multiple secret
keys in FVC2002-DB2 fingerprint database - case 2

Length of Biohash Vector Distance Measure (bit)
512 243,2703
256 121,3589
128 60,4009

Table 25: Simulation results in terms of bits for unlinkability in case of user has single secret key
in FVC2002-DB3 fingerprint database - case 1

Length of Biohash Vector Distance Measure (bit)
512 176,3561
256 88,1780
128 44,0890

Table 26: Simulation results in terms of bits for unlinkability in case of user has multiple secret
keys in FVC2002-DB3 fingerprint database - case 2

Length of Biohash Vector Distance Measure (bit)
512 243,2376
256 121,3628
128 59,9730

BEAT D5.6: page 55 of 62

Simulation results in terms of bits for unlinkability in 

case user has single secret key in  in FVC2002-DB2 
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Simulation results in terms of bits for unlinkability in 

case user has single secret key in  in FVC2002-DB3 
database - Case 1  

Simulation results in terms of bits for unlinkability in 

case user has single secret key in  in FVC2002-DB1 
database - Case 1  
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data in theoretical analysis. When bits extracted from biometric features are uniformly and
independently distributed, it is possible to achieve perfect security from information-theoretical
point of view. However, this strict condition is di�cult to fulfill in real-life application and
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I(B; K) = H(B) � H(B|K) (14)

where I(.) denotes a function which computes mutual information, B is the biohash a user and K
is the secret key of the user.
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Protection Goals: Privacy Leakage 

•  Privacy leakage quantifies how much information about 
biometric data contained in a binary biohash vector.  

•  The probability distribution of biohash plays a very 
important role in this privacy assessment. It is expected that a 
biohash, B, has uniform distribution where a bit’s probability 
being 1 or 0 is equal.  

•  On the other hand, the dependency of binary features is 
ignored in many biometric template protection methods. Thus, 
privacy preservation capability of these methods are highly 
overestimated.  
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Table 7: Entropy of 128, 256, and 512 bit biohash vectors in BioSecure face database

Length of Biohash Vector Entropy (bit)
512 510,8323
256 255,2518
128 127,6303

Table 8: Simulation results in terms of bits for privacy leakage in BioSecure face database

Length of Biohash Vector Privacy Leakage (bit)
512 105,7862
256 59,8323
128 30,6894

5 Capacity Analysis for Biohashing
In this chapter, we address capacity analysis of the biometric hashing methods which are men-
tioned as reference privacy preservation system in the deliverable D5.2 Reference privacy preser-
vation system. The real-world performance prediction of biometric system is a very complex
task. When we talk about privacy evaluation, the complexity of the task increases automatically.
There are several performance indicators for biometric systems (e.g. equal error rate, false ac-
ceptance rate, false rejection rate). On the other hand, biometric vendors are su↵er from lack of
su�cent and reliable performance indicators for privacy evaluation. Thus, they cannot estimate
the actual performance of the biometric hashing methods in real life applications by only using
performance indicators like equal error rate. In such cases, capacity estimation of the biometric
hashing methods can be a good candidate for privacy evaluations since the calculations give an
idea on how many bits of a biohash vectors are actually useful and reliable to distinguish users.
In this chapter, an information theoretic capacity analysis framework for biohashing is discussed
by taking into account their noise resilience which is analogous to the variations of the inputs
for same user. It is possible to estimate the number of di↵erent users that a biometric hashing
system can accommodate by assuming that every biohash vector is possible to be chosen for
biometric template and within-class variations can be considered as noise and each bit position
has the same probabilities.

One of the main motivations of the information theory is the reliable communication over
a noisy channel. In biometrics systems, the users cannot give exactly the same input to the
system each and every case. Hence, there are various inputs which belong to the same user in the
biometrics systems. In other words, there are noisy inputs for each user and it can be interpreted
as being analogous to the communication over a noisy channel. Thus, the variations of the inputs
of the same user can be seen a noise added versions of a true biometric template.

BEAT D5.6: page 33 of 62
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The simulation results for privacy leakage are given in Table 27-29. The privacy leakage is
described in Section 4.3.3. According to the simulation results, biohashes leak approximately
1/4 of the private data if the secret key is stolen by the attacker.

Table 27: Simulation results in terms of bits for privacy leakage in FVC2002-DB1 fingerprint
database

Length of Biohash Vector Privacy Leakage (bit)
512 132,9231
256 58,9703
128 31,9961

Table 28: Simulation results in terms of bits for privacy leakage in FVC2002-DB2 fingerprint
database

Length of Biohash Vector Privacy Leakage (bit)
512 131,7263
256 58,8425
128 30,3845

Table 29: Simulation results in terms of bits for privacy leakage in FVC2002-DB3 fingerprint
database

Length of Biohash Vector Privacy Leakage (bit)
512 97,0203
256 43,1812
128 22,8893

BEAT D5.6: page 56 of 62
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Limitations of the Metrics 
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Limitations of the Metrics 
•  The probability estimation of biometric data, distribution or conditional 

distribution of biometric data or secrets might not be always possible due 
to high dimension of features, limited number of available biometric data. 

•  For template protection algorithms that are not based on information-
theoretical security, mentioned metrics may not be suitable.  

•  For some of the template protection methods proposed in the literature, 
practical evaluations that depend on individual attacks can be used. With 
practical evaluations, a direct way to evaluate an algorithm by assessing 
the efficiency of a defined attack is obtained and what an adversary can 
achieve in practice can be simulated. 

•  Theoretical and practical evaluations are expected to complement each 
other 
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Conclusion 
•  Face: Biosecure ds2  
•  Fingerprint: FVC2002 DB1-DB2-DB3  
•  Evaluations are independent from biometric data type 
•  Similar and comparable results for both face and fingerprint  

Protection Goal Fullfillment Level 
Diversification Strong J 
Unlinkability (case 1) Weak L 
Unlinkability (case 2) Strong J 
Privacy Leakage Fair K  
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